понедельник, 23 ноября 2015 г.

ДОСВІД РОБОТИ

ТЕКСТОВІ ТЕХНОЛОГІЇ НА УРОКАХ МАТЕМАТИКИ
    Сьогодні в умовах науково-технічного прогресу перед сучасною школою постає низка проблем: в умовах традиційного навчання учні пасивно сприймають інформацію, не вміють застосовувати отримані знання на практиці, самостійно здобувати потрібну інформацію. У таких випадках учителеві важко досягти бажаного результату. Тому для заохочення учнів до вивчення математики, для активізації їхньої пізнавальної активності потрібно знаходити новіші та ефективніші методи і форми навчання, використовувати нестандартні форми роботи, що забезпечують розвиток особистості кожного учня. Пошук ефективних методик доцільно зупинити на інтерактивних методах, що сприяють самореалізації школярів, створенні комфортних умов навчання, за яких кожен учень відчуває свою успішність, інтелектуальну спроможність. З цією метою я активно використовую тестову роботу на уроках математики. Тестовий контроль можна використовувати і в перевірці домашнього завдання, і в актуалізації опорних знань, і в узагальненні та систематизації знань, умінь та навичок, і в підбитті підсумків уроку.
          В основному на уроках учні працюють із тестовими завданнями закритої форми із запропонованими відповідями. Як відомо такі тестові завдання розрізняються за принципом побудови відповіді. Вони бувають альтернативні та тестові завдання з множинним вибором. Альтернативні тестові завдання передбачають наявність двох варіантів організації відповіді типу «так—ні»; «правильно-не­правильно» тощо. Тестові завдання із множинними відповідями «правильно—непра­вильно» використовуються в си­туаціях, коли відповіді або роз­в'язання можуть бути тільки пра­вильними або неправильними (на відміну від тестових завдань з однією найточнішою відповід­дю), не мають жодних відтінків переваги і є категоричними. Ось такий альтернативний тест я використовую в 5 класі на уроці математика при перевірки домашнього завдання в темі «Цифри. Десятковий запис натуральних чисел»:
         
Чи правильно, що:
1.    у сотні десять десятків;(+)
2.    в тисячі сто сотень;(-)
3.    число, у якому 5 сотень 0 десятків і 5 одиниць, — це 505;(+)
4.    сума найменшого і найбільшого двоцифрового чисел дорівнює 100;(-)
5.    найменше трицифрове число — це 101;(-)
6.    число, яке має 32 сотні й 3 одиниці, — це 3203?(+)

А цей альтернативний тест я проводжу у 8 класі на уроці геометрії під час вивчення теореми Піфагора в актуалізації опорних знань:

Чи правильно, що:
1.    Єгипетським називають прямокутний трикутник із катетами 3 і 4 та                                                         гіпотенузою 5?(+)
2.    Щоб знайти квадрат гіпотенузи, треба додати квадрати катетів?(+)
3.    Якщо в прямокутному трикутнику катети дорівнюють 6 і 8, то гіпотенуза дорівнює  см?(-)
4.    Діагональ прямокутника зі сторонами 13  см  і 5  см дорівнює 12  см?(-)
5.    Сторона ромба з діагоналями 6  см і 8  см дорівнює 5  см?(+)
6.    Радіус кола, описаного навколо прямокутного трикутника з катетами 6  см і 8  см, дорівнює 10  см?(-)
У 6 класі на уроці математика під час підбиття підсумків уроку при вивченні теми «Віднімання раціональних чисел» працює такий альтернативний тест:

Чи правильно, що:
                                                

 Такі альтернативні тести ще називають графічними диктантами.
   
         
            Тестові завдання із множинним вибором передбачають принай­мні три можливі відповіді (але не більше п'яти). Завдання та­кого типу я використо­вую в тих випадках, коли не­обхідно перевірити вміння пра­вильно відтворювати набуті знання.
Тестові завдання на відновлення відповідності частин являють со­бою модифікацію тестових за­вдань із множинним вибором. До них входять тестові завдання на відповід­ність (на асоціативні зв'язки), які дають можливість установити знання фактів, взаємозв'язків та знання термінології, позначень, методик тощо.
          При вивченні у 8 класі на уроці алгебра теми «Властивості степеня з цілим від’ємним показником» під час підбиття підсумків уроку використовую тест на відповідність:

1
 
А
    
2
 
Б
    
3
В
     
4
  2
Г
     25


Д
    125

         
          А в 9 класі на уроці алгебра  по темі «Нескінченна геометрична прогресія» одним із завдань самостійної роботи є такий тест на відповідність:
установіть відповідність між нескінченною геометричною прогресією(1-4) та її сумою(А-Д):

1
А
2
Б
 
3
В
   4
4
Г


Д
  

          При вивченні теми «Нерівності з модулем» у 9 класі на уроці алгебра учні працюють з таким тестом на відповідність:

1
| x-3 | > 4
А
2
| x-4 | > 3
Б
3
| x+4 | >3
В
4
| x+3 | >4
Г


Д

         
          У 10 класі на уроці алгебра під час перевірки домашнього завдання по темі «Обернена функція» використовуємо слідуючий тест на відповідність:
встановіть відповідність між функцією f(x) і оберненою до неї функцією g(x)


1
f(x)=2x+1
А
2
f(x)=1-2x
Б
3
В
4
Г

         



          У 11 класі на уроці алгебра по темі «Правила обчислення похідних» під час підбиття підсумків уроку працює тест на відповідність:
встановіть відповідність між функцією (1-4) та її похідною (А-Д)

                        
1
у=х2(х3+2х)
А
1
2
    у=5
Б
х3+ х2+х
3
у=
В
5х4+6 х2
4
у=
Г


Д
         
         
          Тестовими завданнями із множинним вибором (три можливі відповіді але не більше п’яти) користуюся у всіх класах, у яких я викладаю. Ось деякі з них.
          У 8 класі на уроці алгебра під час підбиття підсумків уроку по темі «Означення квадратного рівняння. Неповні квадратні рівняння та їх розв’язування» використовую тестові завдання:

                               1. Квадратним є рівняння:
                                  а) х23+5=0          б) 5-х-4х2=0
                                  в) х-3=2х                г) (х2-1)(х2+1)=0
                              2. Зведеним квадратним є рівняння:
                                  а) х2+х+5=0          б) 5-х-х2=0
                                  в) х-2-3х2=0          г) х+3х2=0
                              3. Неповним квадратним є рівняння:
                                  а) х-3=0                 б) х2-3=0
                                  в) х2-3х3=0            г) х3=0

          У 9 класі на уроці геометрії при перевірці домашнього завдання по темі «Теорема синусів і наслідки з неї» учні працюють з тестом:

1) У трикутнику АВС sinA=0,11, sinB=0,22, BC=20. Знайдіть довжину сторони АС.
     А) 10; Б) 40; В) 32; Г) 28.
2)  У трикутнику АВС АВ=см, А=135о, С=30 о. Знайдіть довжину сторони ВС.
    А) 1см; Б) см; В) 4см; Г) 2см.
3) Радіус кола, описаного навколо трикутника АВС, дорівнює 6 м. Знайдіть довжину сторони АВ, якщо sinС=0,85.
    А) 5,1м; Б) 10,2м; В) 6,8м; Г) 7,4м
4) Відомо, що Порівняйте кути .
   А) ; Б) ; В) ; Г) порівняти неможливо.
А на уроці алгебри у тому ж класі при перевірці домашнього завдання по темі «Числові проміжки. Об’єднання та переріз числових проміжків» учні виконують такий тест:
1) До розв’язків якої з наведених нерівностей належить число
   А) х2-1>0; Б) ; В) ; Г) 2x-5>-4.
2) Укажіть найбільший цілий розв’язок нерівності х-9,8.
   А) -9; Б) -10; В) 0; Г) -9,8.
3) Знайдіть суму натуральних розв’язків нерівності х3,5.
   А) 3; Б) 6; В) 4; Г) 5.
         
          У 10 класі на уроці геометрії при перевірці домашнього завдання по темі «Паралельність прямих і площин» учні працюють з тестом:

1) Пряма  паралельна площині . Скільки площин, паралельних площині       
    , можна провести через пряму ?
    А) одну; Б) дві; В) жодної; Г) безліч.
2) Як розташовані площини , якщо пряма  перетинає площину  і
    паралельна площині
    А) паралельні; Б) перетинаються; В) збігаються; Г) визначити неможливо.
3) Яке з наведених тверджень неправильне?
    А) дві площини паралельні, якщо дві прямі, що перетинаються, однієї  
         площини відповідно паралельні двом прямим, що перетинаються,
         другої площини;
    Б)через будь-яку точку поза заданою площиною можна провести площину,
         паралельну заданій, і до того ж тільки одну;
    В) якщо пряма перетинає одну з двох площин, що перетинаються, то вона        
        обов’язково перетинає і другу площину;
    Г) дві площини, паралельні третій площині, паралельні між собою
Тестові завдання відкритого типу, що передбачають вільні відповіді тих, хто тестується, є завданнями без запропонованих варіантів відповідей і використовуються для виявлення знань термінів, означень, понять тощо. Той, хто тестується, виконує завдання за власним баченням. За змістом тестове завдання відкритого типу являє собою твердження з невідо­мою змінною. Такі завдання я в основному використовую в самостійних та контрольних роботах при оцінюванні учнів на достатній та високий рівні
          Перша та головна перевага тестів порівняно з іншими засобами — їхня здатність якісно вимірювати навчальні досягнення, тобто об'­єктивно, надійно і валідно.

Безумовно, тест не є універ­сальним засобом вимірювання в навчанні. Для діагностування творчих здібностей, врахування індивідуально-психологічних особливостей особистості широ­ко використовуються інші види інтерактивних технологій. Однак у цьому разі йдеться про інший характер вимірювання та оцінювання. І це ні в якому разі не зменшує значущості тестів для діагностування навчальних досяг­нень учнів на уроці.

Комментариев нет:

Отправить комментарий